

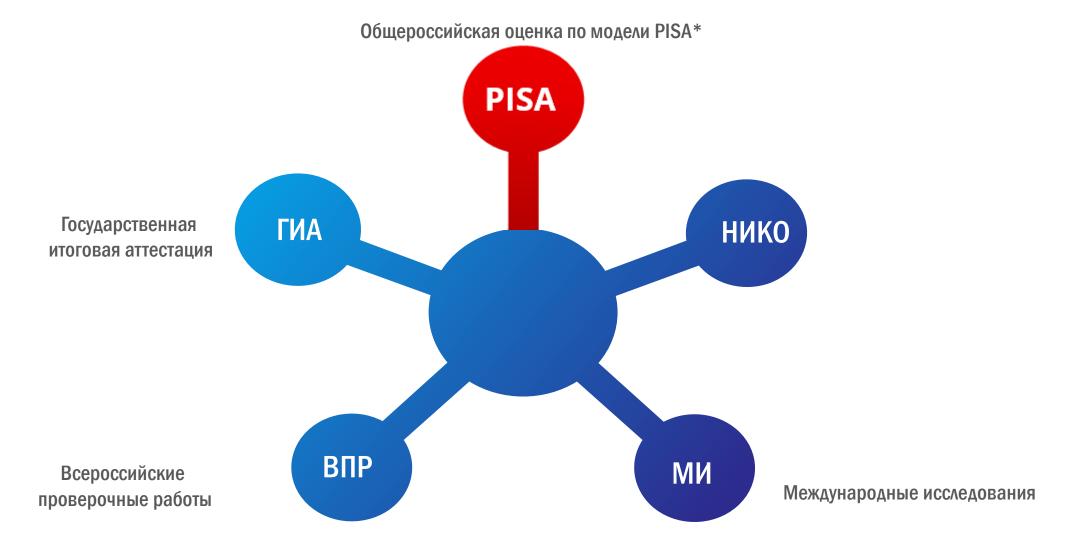
Ключевые проблемы преподавания геометрии в массовой школе и подготовки к итоговой аттестации

С 1 СЕНТЯБРЯ 2022 ГОДА!

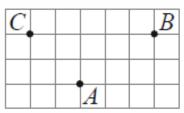
ФГОС, разработанные Минпросвещения России, прошли официальную регистрацию

Официальный интернет-портал правовой информации

С 1 СЕНТЯБРЯ 2022 ГОДА!

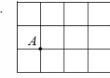

ФГОС, разработанные Минпросвещения России, прошли официальную регистрацию

Официальный интернет-портал правовой информации


- Общие положения
- 24. Соответствие деятельности Организации требованиям ФГОС в части содержания образования определяется результатами государственной итоговой аттестации.

Единая система оценки качества образования

(13) На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

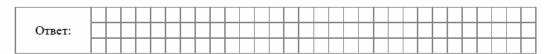

Ответ:

В треугольнике *ABC* проведена биссектриса *CE*. Найдите величину угла *BCE*, если $\angle BAC = 46^{\circ}$ и $\angle ABC = 78^{\circ}$.

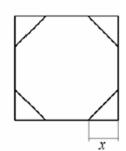
7 класс

https://fioco.ru/ru/osoko/vpr/

(12) На клетчатой бумаге с размером клетки 1×1 отмечены точки A и B. Найдите расстояние между этими точками.


Ответ:

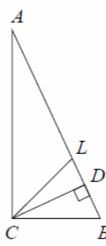
Дан треугольник ABC. Известно, что AB = BC = 25, AC = 40. Найдите синус угла A.


14 Укажите номер верного утверждения.

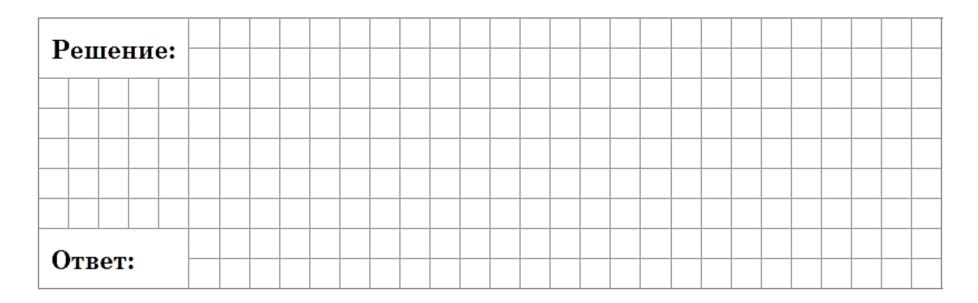
- 1) Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом.
- Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат.
- 3) Если в ромбе диагонали равны, то такой ромб является квадратом.
- 4) Углы при меньшем основании трапеции тупые.

15

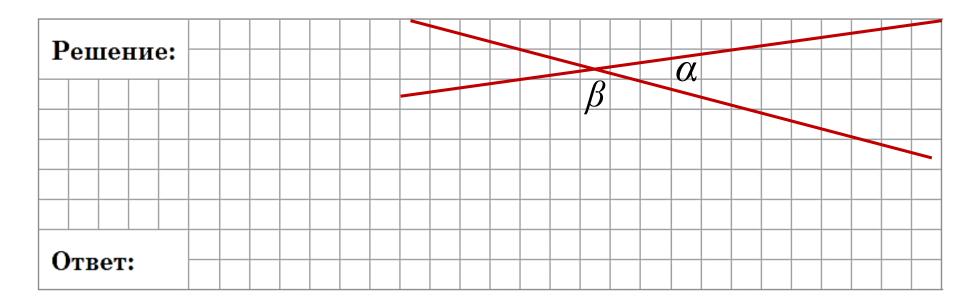
У стекольщика есть квадратное стекло. Сторона квадрата равна 40 см. Нужно вырезать из этого стекла восьмиугольник, у которого все стороны равны и все углы равны. Для этого нужно наметить линии и по этим линиям отрезать от квадрата четыре одинаковых прямоугольных треугольника по углам (см. рисунок). Найдите приближённо длину катета одного такого треугольника в миллиметрах, считая, что $\sqrt{2}$ равен 1,41.



Запишите решение и ответ.


В прямоугольном треугольнике ABC с гипотенузой AB провели высоту CD и биссектрису CL. Найдите величину угла DCL, если $\angle CAB = 25^{\circ}$. Ответ дайте в градусах.

Запишите решение и ответ.



8 класс

14

Решение:						$-\alpha$			
$\beta - \alpha = 20^{\circ}$, c $\alpha = \beta - 20^{\circ}$.	ледова	тельн	5		β				
Ответ:									

14

Решение:
$\beta-\alpha=20^{o}$, следовательно β
$\alpha = \beta - 20^{\circ}.$
$\beta + \alpha = 180^{\circ}$ (сумма смежных углов)
$2 heta - 20^{o} = 180^{o}$, следовательно $ heta = 100^{o}$.
Other: 100 ⁰

Биссектриса угла A прямоугольника ABCD пересекает сторону BC в точке N и делит 14. её в отношении 2:1, считая от вершины B. Найдите сторону AD, если периметр прямоугольника равен 40 см.

Похожая задача

Задача 2. Биссектриса тупого угла параллелограмма делит его сторону в отношении 2: 1, считая от вершины острого угла. Найдите стороны параллелограмма, если его периметр равен 60 см.

Решение. Пусть биссектриса тупого угла B параллелограмма ABCD (рис. 24) пересекает сторону AD в точке M. По условию AM : MD = 2 : 1.

Углы ABM и CBM равны по условию. Углы *CBM* и *AMB* равны как накрест лежащие при параллельных прямых ВС и AD и секущей BM.

Тогда $\angle ABM = \angle AMB$. Следователь-

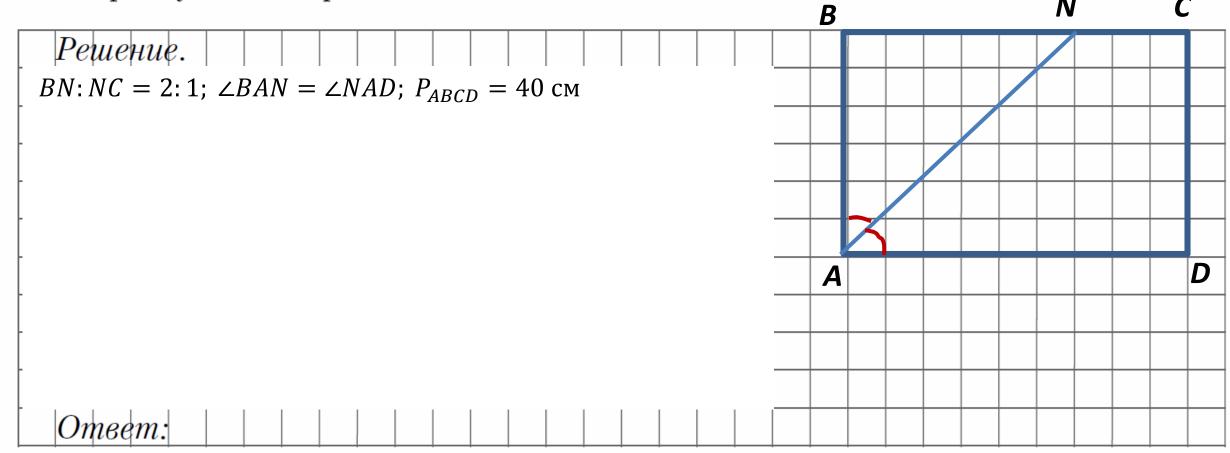
но, треугольник BAM — равнобедренный, отсюда AB = AM.

M

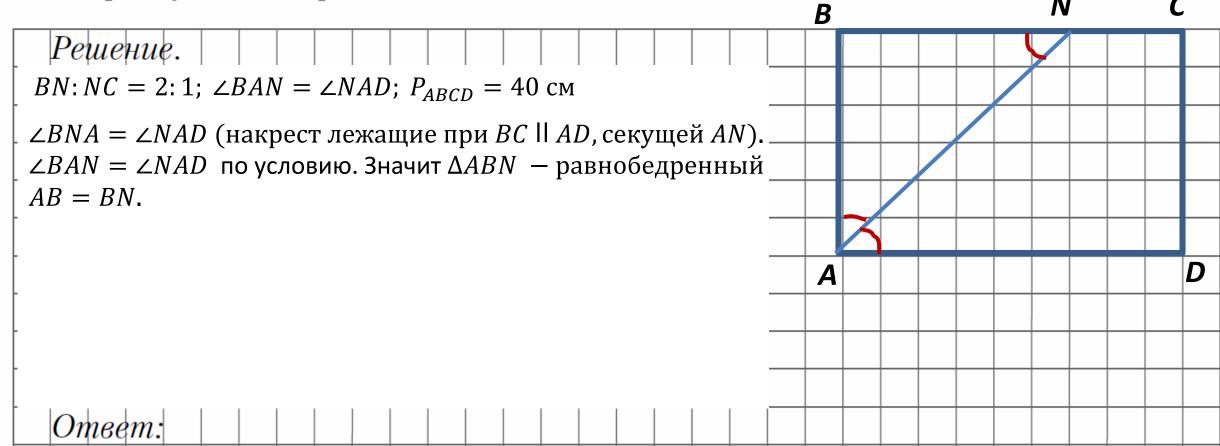
Рис. 24

Пусть MD = x см, тогда AB = AM = 2x см, AD = 3x см. Так как противолежащие стороны параллелограмма равны, то его периметр равен 2(AB + AD). Учитывая, что периметр параллелограмма равен 60 см, получаем:

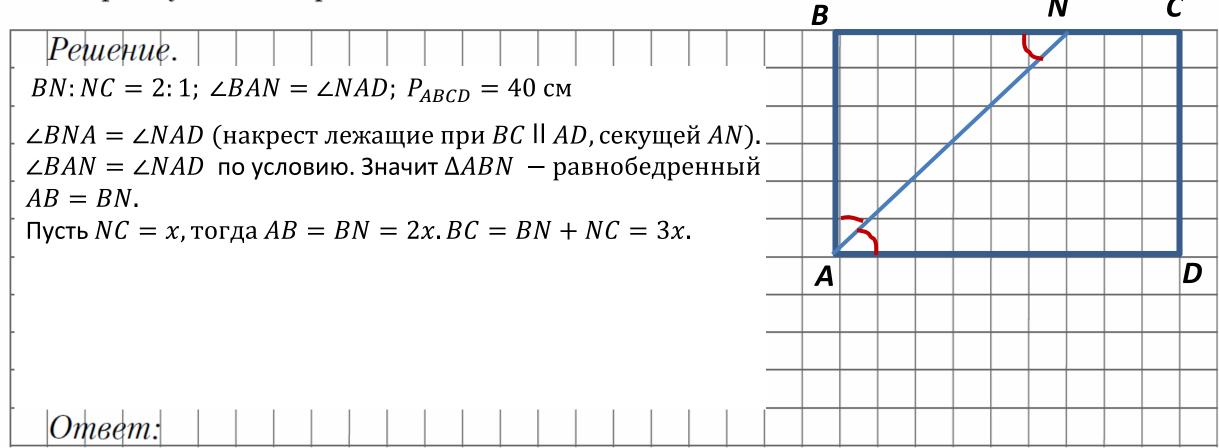
$$2(2x + 3x) = 60;$$


$$x=6$$
.

Следовательно, AB = 12 см, AD = 18 см.


Ответ: 12 см, 18 см. ◀

Геометрия. 8 класс. А.Г. Мерзляк и др.



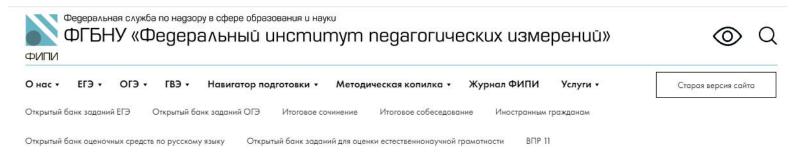
14. Биссектриса угла A прямоугольника ABCD пересекает сторону BC в точке N и делит её в отношении 2:1, считая от вершины B. Найдите сторону AD, если периметр прямоугольника равен 40 см.

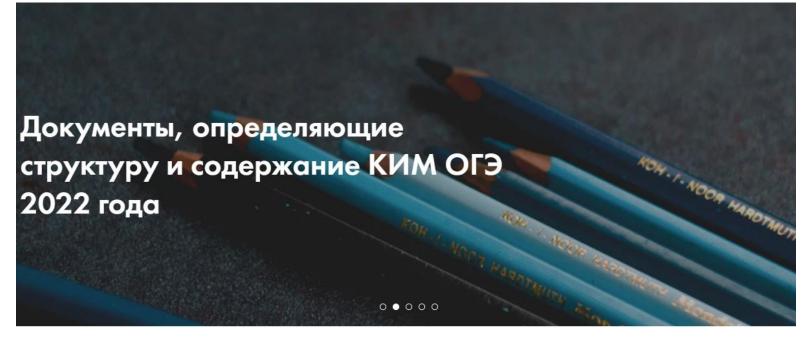
Решение. $BN: NC = 2:1; \angle BAN = \angle NAD; P_{ABCD} = 40 \text{ cm}$ $\angle BNA = \angle NAD$ (накрест лежащие при $BC \parallel AD$, секущей AN). $\angle BAN = \angle NAD$ по условию. Значит $\triangle ABN$ — равнобедренный AB = BN. Пусть NC = x, тогда AB = BN = 2x. BC = BN + NC = 3x. $P_{ABCD} = 2(AB + BC) = 40 \text{ cm}$

14. Биссектриса угла A прямоугольника ABCD пересекает сторону BC в точке N и делит её в отношении 2:1, считая от вершины B. Найдите сторону AD, если периметр прямоугольника равен 40 см.

Решение. $BN: NC = 2:1; \ \angle BAN = \angle NAD; \ P_{ABCD} = 40 \ \text{cm}$ $\angle BNA = \angle NAD$ (накрест лежащие при $BC \parallel AD$, секущей AN). $\angle BAN = \angle NAD$ по условию. Значит $\triangle ABN$ — равнобедренный AB = BN. Пусть NC = x, тогда AB = BN = 2x. BC = BN + NC = 3x. $P_{ABCD} = 2(AB + BC) = 40 \text{ cm}$ 2(2x + 3x) = 40;

14. Биссектриса угла A прямоугольника ABCD пересекает сторону BC в точке N и делит её в отношении 2:1, считая от вершины B. Найдите сторону AD, если периметр прямоугольника равен 40 см.


Решение. $BN: NC = 2:1; \angle BAN = \angle NAD; P_{ABCD} = 40 \text{ cm}$ $\angle BNA = \angle NAD$ (накрест лежащие при $BC \parallel AD$, секущей AN). $\angle BAN = \angle NAD$ по условию. Значит $\triangle ABN$ — равнобедренный AB = BN. Пусть NC = x, тогда AB = BN = 2x. BC = BN + NC = 3x. $P_{ABCD} = 2(AB + BC) = 40 \text{ cm}$ 2(2x + 3x) = 40;5x = 20; $AD = BC = 3 \cdot 4 = 12 \text{ (cm)}$ x = 4. *Ответ:* 12 (см)



Государственная итоговая аттестация

<u> Методические рекомендации обучающимся по организации индивидуальной подготовки к ОГЭ</u>

<u>Методические рекомендации для выпускников по самостоятельной подготовке к ЕГЭ</u>

Государственная итоговая аттестация

Федеральная служба по надзору в сфере образования и науки

ФГБНУ «Федеральный институт negaroruческих измерений»

ФИПИ

ЕГЭ ∙

• €1O

ГВЭ →

Навигатор подготовки •

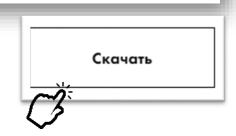
Методическая копилка

Журнал ФИПИ

Услуги ▼

Изменения в КИМ ОГЭ 2022 года относительно КИМ ОГЭ 2021 года отсутствуют.

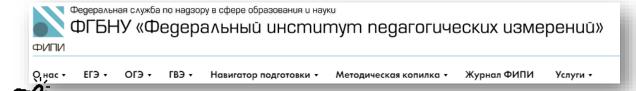
Демоверсии, спецификации, кодификаторы

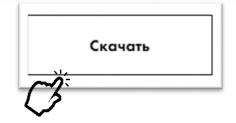

Единый государственный экзамен по математике

- Демонстрационный вариант для базового уровня
- Спецификация для базового уровня
- Кодификатор требований
- Кодификатор элементов
- Демонстрационный вариант для профильного уровня.
- Спецификация для профильного уровня

В данном разделе представлены проекты документов, определяющих структуру и содержание контрольных измерительных материалов единого государственного экзамена 2022 года:

- кодификаторы проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена;
- спецификации контрольных измерительных материалов для проведения единого государственного экзамена;
- демонстрационные варианты контрольных измерительных материалов единого государственного экзамена.


Приглашаем к общественно-профессиональному обсуждению данных материалов. Вопросы и предложения можно направлять на адрес fipi@fipi.ru до 30 сентября 2021 г.


Государственная итоговая аттестация

БАЗА

Единый государственный экзамен по математике

- Демонстрационный вариант для базового уровня
- Спецификация для базового уровня
- Кодификатор требований
- Кодификатор элементов
- Демонстрационный вариант для профильного уровня
- Спецификация для профильного уровня

10. Изменения в КИМ ЕГЭ 2022 года в сравнении с КИМ 2021 года

- 1. Удалено задание 2, проверяющее умение выполнять вычисления и преобразования (данное требование внесено в позицию задачи 7 в новой нумерации).
- Добавлены задание 5, проверяющее умение выполнять действия с геометрическими фигурами, и задание 20, проверяющее умение строить и исследовать простейшие математические модели.
- 3. Количество заданий увеличилось с 20 до 21, максимальный балл за выполнение всей работы стал равным 21.

ПРОФИЛЬ

10. Изменения в КИМ ЕГЭ 2022 года в сравнении с КИМ 2021 года

- Удалены задания 1 и 2, проверяющие умение использовать приобретённые знания и умения в практической и повседневной жизни, задание 3, проверяющее умение выполнять действия с геометрическими фигурами, координатами и векторами.
- Добавлены задание 9, проверяющее умение выполнять действия с функциями, и задание 10, проверяющее умение моделировать реальные ситуации на языке теории вероятностей и статистики, вычислять в простейших случаях вероятности событий.
- 3. Внесено изменение в систему оценивания: максимальный балл за выполнение задания повышенного уровня 13, проверяющего умение выполнять действия с геометрическими фигурами, координатами и векторами, стал равен 3; максимальный балл за выполнение задания повышенного уровня 15, проверяющего умение использовать приобретённые знания и умения в практической деятельности и повседневной жизни, стал равен 2.
- Количество заданий уменьшилось с 19 до 18, максимальный балл за выполнение всей работы стал равным 31.

25 заданий

Часть 1	19 заданий с кратким ответом	Базовый уровень
Часть 2	6 заданий <i>с развернутым ответом</i>	Повышенный и высокий уровень

3 часа 55 минут (235 минут)

Для прохождения аттестационного порога необходимо набрать не менее **8 баллов**,

из которых **не менее 2 баллов** должны быть получены за решение заданий **по геометрии** (задания 15–19, 23–25).

Таблица 2. Распределение заданий части 1 по разделам содержания курса математики

Код по КЭС	Название раздела	Количество заданий
1	Числа и вычисления	7
2	Алгебраические выражения	1
3	Уравнения и неравенства	2
4	Числовые последовательности	1
5	Функции и графики	1
6	Координаты на прямой и плоскости	1
7	Геометрия	5
8	Статистика и теория вероятностей	1

Таблица 4. Распределение заданий части 2 по разделам содержания курса математики

Код по КЭС	Название раздела	Количество заданий
3	Уравнения и неравенства	2
5	Функции и графики	1
7	Геометрия	3

Таблица 6. Распределение заданий экзаменационной работы по уровням сложности

Уровень сложности заданий	Количество заданий	Максимальный первичный балл
Базовый	19	19
Повышенный	4	8
Высокий	2	4
Итого	25	31

Таблица 7. Планируемые проценты выполнения заданий части 2

Номер задания	20	21	22	23	24	25
Уровень сложности	П	П	П	П	В	В
Ожидаемые проценты выполнения	30–50	15–30	3–15	30–50	15–30	3–15

Письмо Рособрнадзора от 19.02.2021 № 05-20

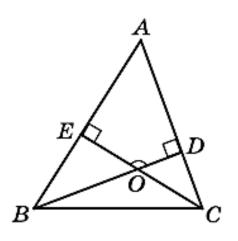
Таблица 3

Шкала перевода суммарного первичного балла за выполнение экзаменационной работы в отметку по пятибалльной системе оценивания

Отметка по пятибалльной системе оценивания	«2»	«3»	«4»	«5»
Суммарный первичный балл за работу в целом	0 – 7	8 – 14, не менее 2 баллов получено за выполнение заданий по геометрии	15 – 21, не менее 2 баллов получено за выполнение заданий по геометрии	22 – 31, не менее 2 баллов получено за выполнение заданий по геометрии

Рекомендуемый минимальный первичный балл для отбора обучающихся в профильные классы для обучения по образовательным программам среднего общего образования:

- для естественнонаучного профиля: 18 баллов, из них не менее 6 по геометрии;
- для экономического профиля: 18 баллов, из них не менее 5 по геометрии;
- для физико-математического профиля: 19 баллов, из них не менее 7 по геометрии.

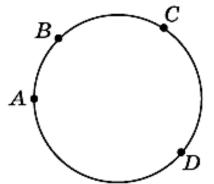


Геометрия (задания 15 – 18)

В треугольнике ABC угол A равен 56° , углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.

Решение. Поскольку в четырёхугольнике ADOE два угла прямые, сумма двух других углов равна 180°. Поэтому $\angle D$ $OE = 180^{\circ} - \angle A = 180^{\circ} - 56^{\circ} = 124^{\circ}$.

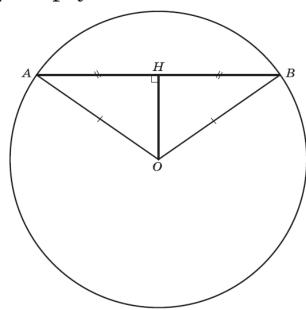
Ответ: 124.



Геометрия (задания 15 – 18)

Точки A, B, C и D, последовательно расположенные на окружности в указанном порядке, делят её на четыре дуги, градусные меры которых относятся как 1:3:4:10 (дуга AB — наименьшая). Найдите градусную меру дуги BD, содержащей точку C.

Решение. Обозначим градусную меру дуги AB через x. Тогда градусные меры дуг BC, CD и DA равны соответственно 3x, 4x и 10x. В сумме эти четыре дуги составляют окружность. Поэтому x + 3x + 4x + 10x = 18x = 360, откуда x = 20. Тогда дуга BD = 3x + 4x = 7x = 140. Ответ: 140.

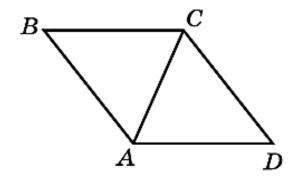

Геометрия (задания 15 – 18)

Расстояние от центра окружности до хорды длины 24 равно 5. Найдите радиус окружности.

Решение. Пусть AB — данная хорда окружности с центром O. Тогда OA = OB = R. Поскольку треугольник OAB — равнобедренный, его высота OH (которая является также медианой и биссектрисой) и будет расстоянием от центра окружности до хорды. Значит, OH = 5, AH = 12, а искомый радиус OA находится по теореме Пифагора для треугольника OHA и будет ра-

вен $\sqrt{OH^2 + AH^2} = \sqrt{25 + 144} = 13$.

Ответ: 13.

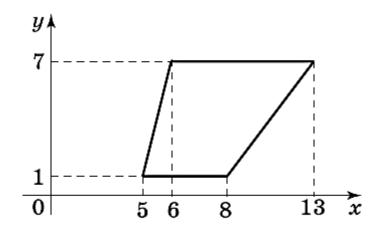

© АО «Издательство «Просвещение» 2021

ОГЭ. Задания, на которые необходимо обратить особое внимание

Геометрия (задания 15 – 18)

Диагональ параллелограмма образует с двумя его сторонами углы 111° и 11°. Найдите меньший угол параллелограмма. Ответ дайте в градусах.

Решение. Рассмотрим параллелограмм ABCD, в котором $\angle BAC = 111^{\circ}$, $\angle CAD = 11^{\circ}$. Тогда $\angle BAD = \angle BAC + \angle DAC = 111^{\circ} + 11^{\circ} = 122^{\circ}$. Следовательно, $\angle ABC = 180^{\circ} - 122^{\circ} = 58^{\circ}$. Значит, меньший угол параллелограмма равен 58° . Ответ: 58.

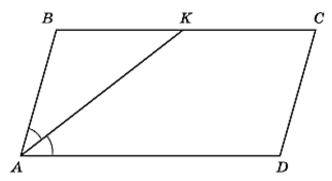


Геометрия (задания 15 – 18)

Найдите площадь трапеции, изображённой на рисунке.

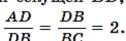
Решение. Основания трапеции равны 3 и 7, высота равна 6. Поэтому искомая площадь равна $\frac{1}{2}(3+7)\cdot 6=30$.

Ответ: 30.



Часть 2

Геометрические задания нередко вызывают затруднения экзаменуемых. Здесь требуется аккуратный чертёж, обоснование полученного факта, вычисления. Задания части 2 относятся к заданиям повышенного и высокого уровня сложности, поэтому ожидать на этом месте задачу, в которой используется только один геометрический факт, не стоит. Это задания, при выполнении которых нужно будет решить несколько геометрических задач.


Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=6, CK=11.

Решение. Углы BKA и KAD равны как накрест лежащие при параллельных прямых BC и AD и секущей AK, AK — биссектриса угла BAD, следовательно, $\angle BKA = \angle KAD = \angle BAK$. Значит, треугольник ABK равнобедренный и AB = BK = 6. Периметр параллелограмма со сторонами 6 и 17 равен 46. Ответ: 46.

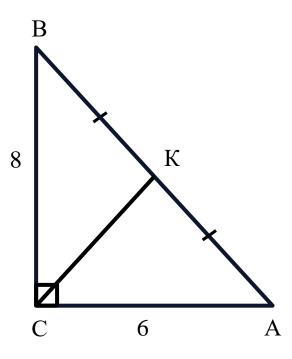
Основания BC и AD трапеции ABCD равны соответственно 6 и 24, BD=12. Докажите, что треугольники CBD и BDA подобны.

Доказательство. В треугольниках ADB и DBC углы ADB и DBC равны как накрест лежащие при параллельных прямых AD и BC и секущей BD, кроме того,

Поэтому указанные треугольники подобны по двум пропорциональным сторонам и углу между ними.

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC = 6, BC = 8. Найдите медиану CK этого треугольника.

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC = 6, BC = 8. Найдите медиану CK этого треугольника.


Дано:

 \triangle ABC — прямоугольный, ∠C = 90 $^{\circ}$,

AC = 6, BC = 8,

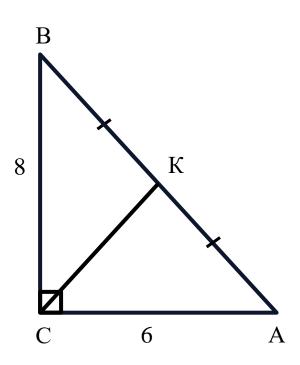
СК – медиана ∆АВС.

Найти: СК

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC = 6, BC = 8. Найдите медиану CK этого треугольника.

Дано:

 Δ ABC — прямоугольный, ∠C = 90 $^{\circ}$,


AC = 6, BC = 8,

СК – медиана ∆АВС.

Найти: СК

- **§7. Пункт 19.** Медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы. (Геометрия 7. В. Ф. Бутузов)
- §11. Пункт 107. Задача 53. Докажите, что медиана прямоугольного треугольника, проведённая к гипотенузе, разбивает его на два равнобедренных треугольника. (Геометрия 7 9. А.В. Погорелов)

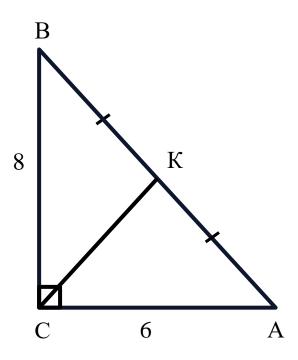
Глава V. §3. Задача 404. Докажите, что медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы. (Геометрия 7 – 9. Л.С. Атанасян)

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC = 6, BC = 8. Найдите медиану CK этого треугольника.

Дано:

 \triangle ABC — прямоугольный, ∠C = 90 $^{\circ}$,

AC = 6, BC = 8,


СК – медиана ∆АВС.

Найти: СК

Решение.

Найдем гипотенузу АВ по теореме Пифагора:

$$AB = \sqrt{BC^2 + AC^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = 10.$$

В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC = 6, BC = 8. Найдите медиану CK этого треугольника.

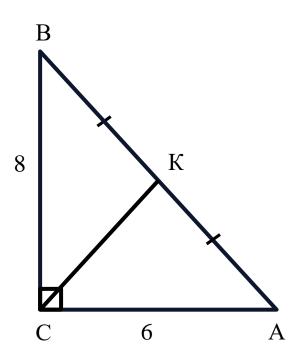
Дано:

△ABC — прямоугольный, ∠C = 90 $^{\circ}$,

AC = 6, BC = 8,

СК – медиана ∆АВС.

Найти: СК


Решение.

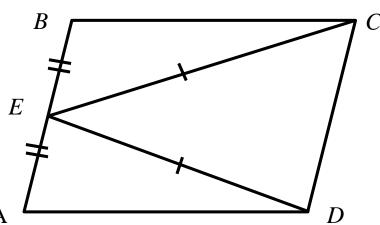
Найдем гипотенузу АВ по теореме Пифагора:

$$AB = \sqrt{BC^2 + AC^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = 10.$$

$$CK = \frac{1}{2}AB = 5$$

Ответ. 5

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC = ED. Докажите, что данный параллелограмм — прямоугольник.

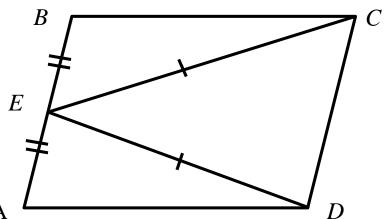


В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC = ED. Докажите, что данный параллелограмм — прямоугольник.

Дано:

ABCD – параллелограмм, AE = BE, EC = ED,

Доказать: ABCD – прямоугольник.



В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC = ED. Докажите, что данный параллелограмм — прямоугольник.

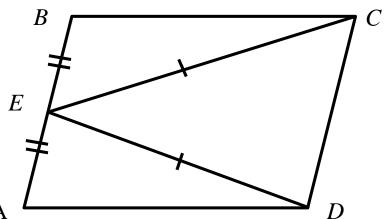
Дано:

ABCD – параллелограмм, AE = BE, EC = ED.

Доказать: ABCD – прямоугольник.

Доказательство:

 $\Delta BEC = \Delta AED$ по трем сторонам (AE = BE, EC = ED по условию, BC = AD по свойству параллелограмма).



В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC = ED. Докажите, что данный параллелограмм — прямоугольник.

Дано:

ABCD – параллелограмм, AE = BE, EC = ED.

Доказать: ABCD – прямоугольник.

Доказательство:

 Δ BEC = Δ AED по трем сторонам (AE = BE, *EC* = ED по условию, BC = AD по свойству параллелограмма). Следовательно ∠CBE = ∠DAE. Так как ∠CBE + ∠DAE = 180 $^{\circ}$, то ∠CBE = ∠DAE = 90 $^{\circ}$. Значит ABCD – прямоугольник.

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC = ED. Докажите, что данный параллелограмм — прямоугольник.

E

B

Дано:

ABCD – параллелограмм, AE = BE, EC = ED.

Доказать: ABCD – прямоугольник.

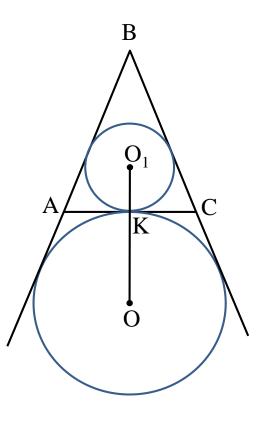
Доказательство:

 Δ BEC = Δ AED по трем сторонам (AE = BE, *EC* = ED по условию, BC = AD по свойству параллелограмма). Следовательно ∠CBE = ∠DAE. Так как ∠CBE + ∠DAE = 180 $^{\circ}$, то ∠CBE = ∠DAE = 90 $^{\circ}$. Значит ABCD – прямоугольник.

■ Пункт 54 (Геометрия 7 – 9. А.В. Погорелов)

- 24. Докажите, что если у параллелограмма все углы равны, то он является прямоугольником.
- 25. Докажите, что если в параллелограмме хотя бы один угол прямой, то он является прямоугольником.
- 26. Докажите, что если у параллелограмма диагонали равны, то он является прямоугольником.

Четырёхугольники

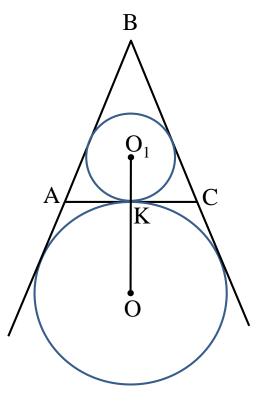

Основание АС равнобедренного треугольника АВС равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания АС. Найдите радиус окружности, вписанной в треугольник АВС.

Основание АС равнобедренного треугольника АВС равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания АС. Найдите радиус окружности, вписанной в треугольник АВС.

Дано:

 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.

Найти: O₁K.



Основание АС равнобедренного треугольника ABC равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания АС. Найдите радиус окружности, вписанной в треугольник ABC.

Дано:

 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.

Найти: O₁K.

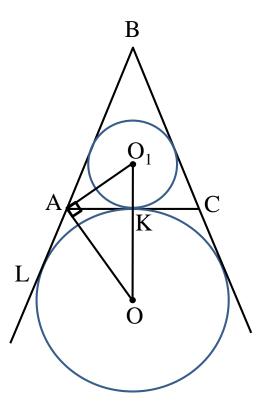
Теорема

5.2

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

(Геометрия 7 - 9. А.В. Погорелов)

Основание АС равнобедренного треугольника АВС равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания АС. Найдите радиус окружности, вписанной в треугольник АВС.


Дано:

 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.

Найти: O₁K.

Решение:

 AO_1 – биссектриса $\angle BAC$, AO – биссектриса $\angle LAC$. $\angle BAC$ и $\angle LAC$ – смежные, значит $\angle OAO_1 = 90^{\circ}$.

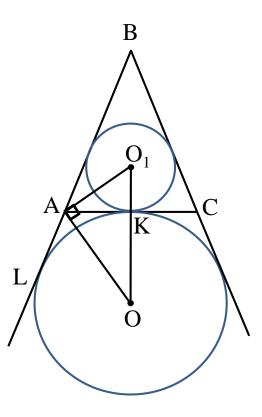
Теорема

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

(Геометрия 7 - 9. А.В. Погорелов)

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC. Найдите радиус окружности, вписанной в треугольник ABC.

Дано:


 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.

Найти: O₁K.

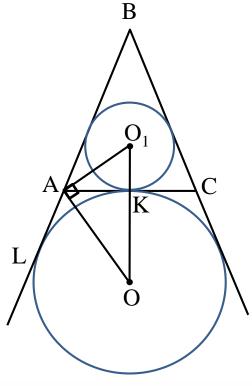
Решение:

 AO_1 – биссектриса $\angle BAC$, AO – биссектриса $\angle LAC$. $\angle BAC$ и $\angle LAC$ – смежные, значит $\angle OAO_1 = 90^{\circ}$.

ВК – биссектриса, высота и медиана, следовательно АК = КС=6.

Основание АС равнобедренного треугольника АВС равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания АС. Найдите радиус окружности, вписанной в треугольник АВС.

Дано:


 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.

Найти: O₁K.

Решение:

 AO_1 – биссектриса $\angle BAC$, AO – биссектриса $\angle LAC$. $\angle BAC$ и $\angle LAC$ – смежные, значит $\angle OAO_1 = 90^{\circ}$.

ВК – биссектриса, высота и медиана, следовательно АК = КС=6.

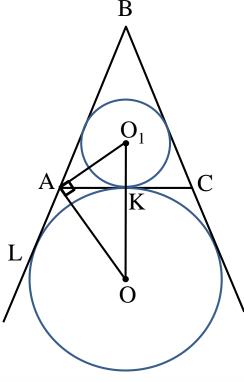
1°. Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.

(Геометрия 7 – 9. Л.С. Атанасян)

Основание АС равнобедренного треугольника АВС равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания АС. Найдите радиус окружности, вписанной в треугольник АВС.

Дано:

 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.


Найти: O₁K.

Решение:

 AO_1 – биссектриса $\angle BAC$, AO – биссектриса $\angle LAC$. $\angle BAC$ и $\angle LAC$ – смежные, значит $\angle OAO_1 = 90^{\circ}$.

ВК – биссектриса, высота и медиана, следовательно АК = КС=6.

 $\Delta \mathsf{OAO_1} - \mathsf{прямоугольный}, \ AK^2 = \ O_1K \cdot \ OK,$

1°. Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.

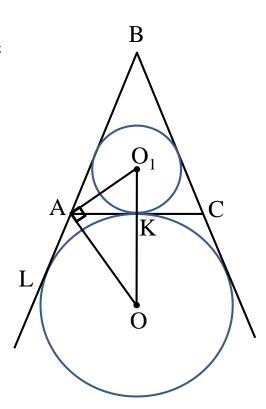
(Геометрия 7 – 9. Л.С. Атанасян)

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC. Найдите радиус окружности, вписанной в треугольник ABC.

Дано:

 \triangle ABC – равнобедренный, основание AC = 12, OK = 8.

Найти: O₁K.


Решение:

 AO_1 – биссектриса $\angle BAC$, AO – биссектриса $\angle LAC$. $\angle BAC$ и $\angle LAC$ – смежные, значит $\angle OAO_1 = 90^0$.

ВК – биссектриса, высота и медиана, следовательно АК = КС=6. Δ OAO $_1$ – прямоугольный, $AK^2 = O_1K \cdot OK$,

$$O_1 K = \frac{AK^2}{OK} = \frac{36}{8} = 4.5.$$

Ответ: 4,5

Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2021 года

Русский язык

Математика

Физика

Химия

Информатика и ИКТ

Биология

История

География

Обществознание

Литература

Иностранный язык

Единый государственный экзамен по математике

Скачать

© 2004-2021 ФИПИ. Все права защищены.

18 заданий

Часть 1	6 заданий	Базовый уровень с кратким ответом		
	5 заданий	Повышенный уровень с кратким ответом		
Часть 2	5 заданий	Повышенный уровень с развернутым ответом		
	2 задания	Высокий уровень с развернутым ответом		

3 часа 55 минут (235 минут)

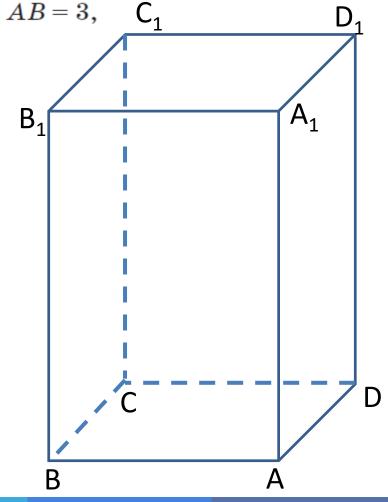
Максимальное количество первичных баллов – 31 балл.

Задания 1–11 по 1 баллу, Задания 12, 14, 15 – максимально по 2 балла, Задания 13 и 16 – максимально по 3 балла, Задания 17 и 18 – максимально по 4 балла.

Номер задания	Проверяемые требования (умения)	Коды проверяемых требований к уровню подготовки (по кодификатору)	Коды проверяемых элементов содержания (по кодификатору)	Уровень сложности задания	Максимальный балл за выполнение задания	Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне (в мин.)	Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.)
12	Уметь решать уравнения и неравенства	2.1-2.3	2.1, 2.2	П	2	20	10
13	Уметь выполнять действия с геометрическими фигурами, координатами и векторами	4.2, 4.3, 5.2, 5.3	5.2–5.6	П	3	40	20
14	Уметь решать уравнения и неравенства	2.3	2.1, 2.2	П	2	30	15
15	Уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни	6.1, 6.3	1.1, 2.1.12	П	2	30	25
16	Уметь выполнять действия с геометрическими фигурами, координатами и векторами	4.1, 4.3, 5.2, 5.3	5.1, 5.5	П	3	_	35
17	Уметь решать уравнения и неравенства	2.1–2.3, 5.1	2.1, 2.2, 3.1–3.3	В	4	-	35
18 тво «Просвеш	Уметь строить и исследовать простейшие математические модели	5.1, 5.3	1.1–1.4, 2.1– 2.2, 3.1–3.3	В	4	_	40

Демонстрационный вариант ЕГЭ 2022 г. МАТЕМАТИКА, 11 класс. Профильный уровень.

- Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N- середины рёбер AA_1 и A_1C_1 соответственно.
 - а) Докажите, что прямые BM и MN перпендикулярны.
 - б) Найдите угол между плоскостями BMN и ABB_1 .
- Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
 - а) Докажите, что прямые AD и BC параллельны.
 - б) Найдите площадь треугольника *АКВ*, если известно, что радиусы окружностей равны 4 и 1.


В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

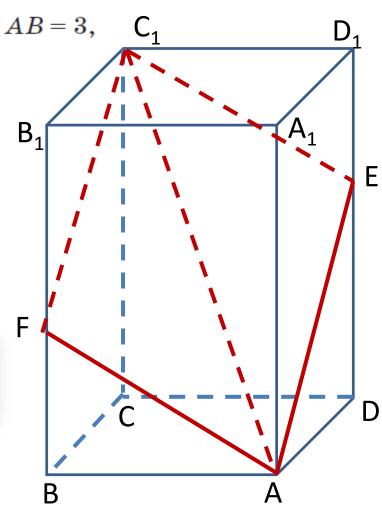
- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, $BC=2,\ AA_1=5$.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, C_1 BC=2, $AA_1=5$.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, C_1 BC=2, $AA_1=5$.


Решение.

а) AFC_1E — сечение параллелепипеда плоскостью, проходящей через диагональ AC_1

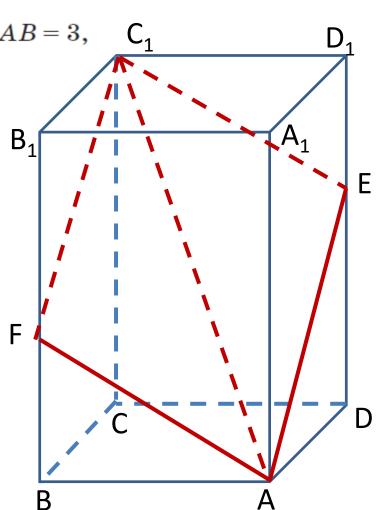
□□ф Теорема 6.3

Прямые, образованные пересечением двух параллельных плоскостей третьей плоскостью, параллельны.

Геометрия 10. Углубленный уровень. Мерзляк А.Г., Номировский Д.А., Поляков В.М.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, C_1 BC=2, $AA_1=5$.

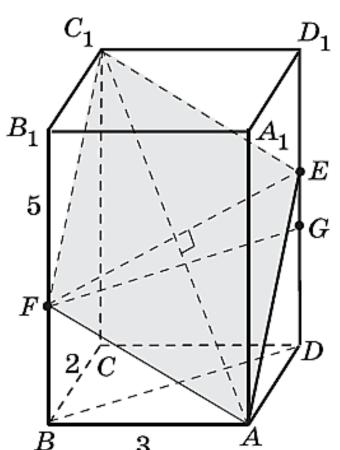

Решение.

а) AFC_1E — сечение параллелепипеда плоскостью, проходящей через диагональ AC_1

При пересечении двух параллельных плоскостей (CC_1D_1D и BB_1A_1A) третьей плоскостью прямые, по которым она их пересекает, параллельны, поэтому $AF \parallel EC_1$.

 $FC_1 \parallel AE$ аналогично.

Четырёхугольник AFC_1E — параллелограмм.

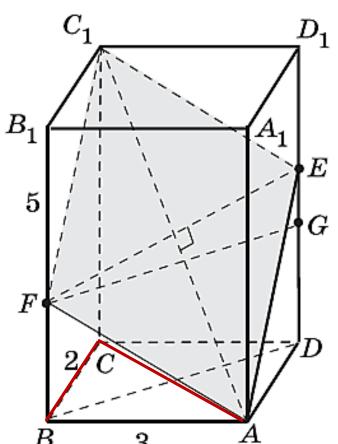


В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) Сечение является ромбом в случае, если AF = FC₁.



В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

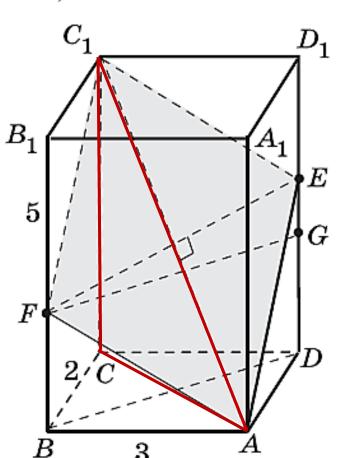
- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) Сечение является ромбом в случае, если AF = FC₁. Из прямоугольного \triangle ABC по теореме Пифагора $AC^2 = AB^2 + BC^2 = 9 + 4 = 13$.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.


Решение.

б) Сечение является ромбом в случае, если $AF = FC_1$. Из прямоугольного $\triangle ABC$ по теореме Пифагора

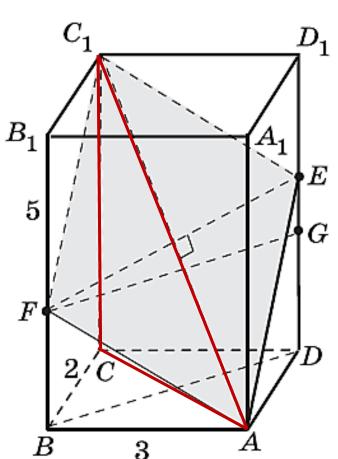
$$AC^2 = AB^2 + BC^2 = 9 + 4 = 13.$$

Гипотенуза AC_1 прямоугольного ΔACC_1 является диагональю ромба AFC_1E .

По теореме Пифагора $AC_1^2 = AC^2 + C_1C^2 = 13 + 25 = 38$. $AC_1 = \sqrt{38}$.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, $BC=2,\ AA_1=5$.

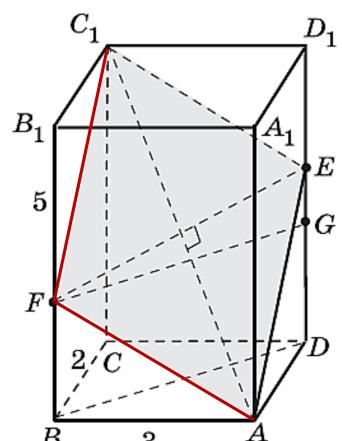

Решение.

б) Сечение является ромбом в случае, если $AF = FC_1$. Из прямоугольного $\triangle ABC$ по теореме Пифагора

$$AC^2 = AB^2 + BC^2 = 9 + 4 = 13.$$

Гипотенуза AC_1 прямоугольного $\triangle ACC_1$ является диагональю ромба AFC_1E .

По теореме Пифагора $AC_1^2 = AC^2 + C_1C^2 = 13 + 25 = 38$. $AC_1 = \sqrt{38}$. Для нахождения площади сечения достаточно найти вторую диагональ ромба FE.



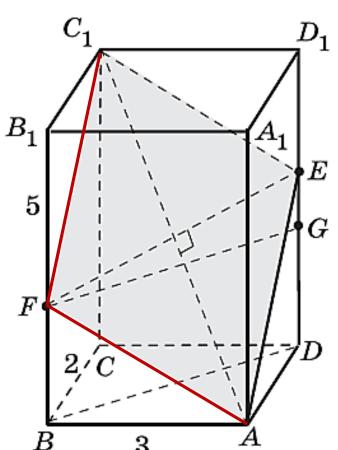
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) $AF = FC_1, AC_1 = \sqrt{38}$ Найдём вторую диагональ ромба FE.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.


- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) $AF = FC_1, AC_1 = \sqrt{38}$

Найдём вторую диагональ ромба FE.

Треугольники ABF и FB_1C_1 – прямоугольные.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

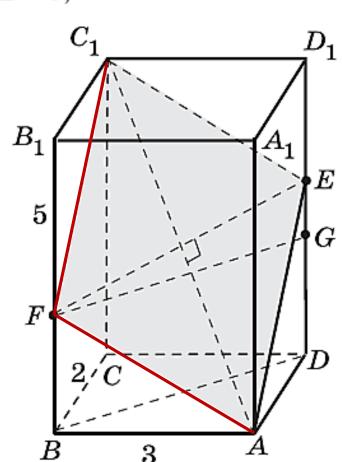
- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б)
$$AF = FC_1, AC_1 = \sqrt{38}$$

Найдём вторую диагональ ромба FE.

Треугольники ABF и FB_1C_1 – прямоугольные.

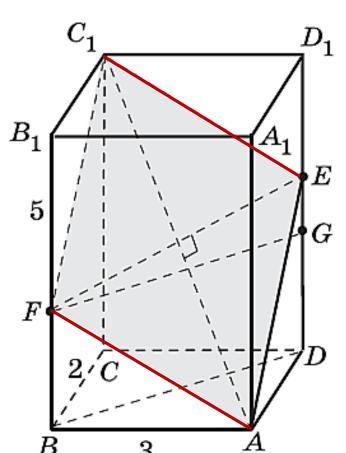

По теореме Пифагора
$$AF^2 = AB^2 + BF^2 = 9 + BF^2$$
;

$$FC_1^2 = B_1C_1^2 + B_1F^2 = 4 + (5-BF)2.$$

$$9 + BF^2 = 4 + (5 - BF)^2$$
;

$$9 + BF^2 = 4 + 25 - 10BF + BF^2$$
;

$$10BF = 20; BF = 2.$$

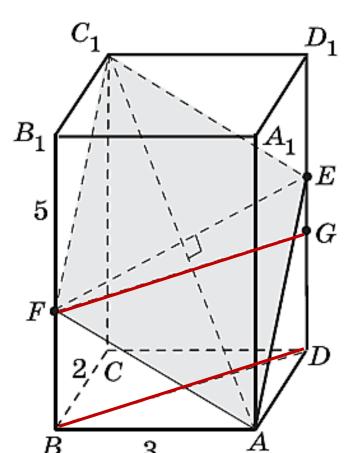

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) $AF = FC_1$, $AC_1 = \sqrt{38}$, BF = 2Найдём вторую диагональ ромба FE.

$$\triangle BFA = \triangle C_1D_1E$$
 значит $BF = D_1E = 2$.


В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) $AF = FC_1$, $AC_1 = \sqrt{38}$, BF = 2Найдём вторую диагональ ромба FE.

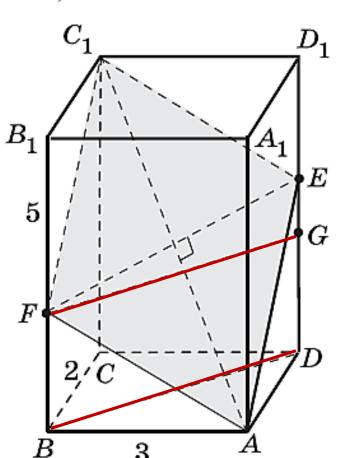
 $\triangle BFA = \triangle C_1D_1E$ значит $BF = D_1E = 2$. Проведём $FG \parallel BD$. Тогда BF = GD = 2, $FG \perp DD_1$, $EG = DD_1 - DG - D_1E = 5 - 2 - 2 = 1$,

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

6) $AF = FC_1, AC_1 = \sqrt{38}, BF = 2$


Найдём вторую диагональ ромба FE.

 $\triangle BFA = \triangle C_1D_1E$ значит $BF = D_1E = 2$.

Проведём $FG \parallel BD$. Тогда $BF = GD = 2, FG \perp DD_1$,

 $EG = DD_1 - DG - D_1E = 5 - 2 - 2 = 1$,

Из $\triangle ABD$ по теореме Пифагора $BD = \sqrt{2^2 + 3^2} = \sqrt{13}$ и $FG = BD = \sqrt{13}$.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

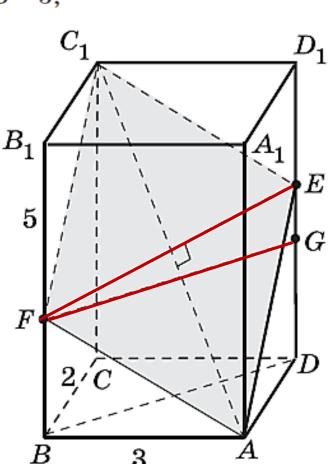
- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б)
$$AF = FC_1$$
, $AC_1 = \sqrt{38}$, $BF = 2$

Найдём вторую диагональ ромба FE.

$$\triangle BFA = \triangle C_1D_1E$$
 значит $BF = D_1E = 2$.


Проведём $FG \parallel BD$. Тогда $BF = GD = 2, FG \perp DD_1$,

$$EG = DD_1 - DG - D_1E = 5 - 2 - 2 = 1$$
,

Из $\triangle ABD$ по теореме Пифагора $BD = \sqrt{2^2 + 3^2} = \sqrt{13}$ и $FG = BD = \sqrt{13}$.

В прямоугольном ΔFEG по теореме Пифагора находим

$$FE = \sqrt{FG^2 + EG^2} = \sqrt{14}.$$

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

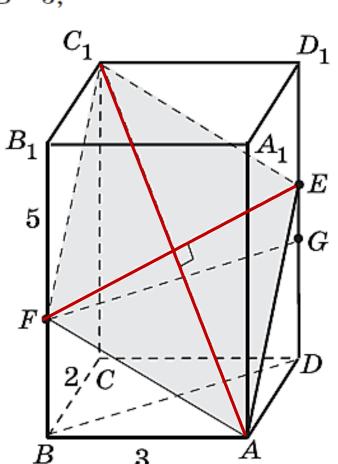
б)
$$AF = FC_1$$
, $AC_1 = \sqrt{38}$, $BF = 2$

Найдём вторую диагональ ромба FE.

$$\triangle BFA = \triangle C_1D_1E$$
 значит $BF = D_1E = 2$.

Проведём $FG \parallel BD$. Тогда $BF = GD = 2, FG \perp DD_1$,

$$EG = DD_1 - DG - D_1E = 5 - 2 - 2 = 1$$
,


Из $\triangle ABD$ по теореме Пифагора $BD = \sqrt{2^2 + 3^2} = \sqrt{13}$ и $FG = BD = \sqrt{13}$.

В прямоугольном ΔFEG по теореме Пифагора находим

$$FE = \sqrt{FG^2 + EG^2} = \sqrt{14}.$$

Площадь S ромба AFC₁E находим по формуле

$$S = \frac{1}{2}FE \cdot AC_1 = \frac{1}{2}\sqrt{38} \cdot \sqrt{14} = \sqrt{19 \cdot 7} = \sqrt{133}.$$

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ проведена секущая плоскость, содержащая диагональ AC_1 и пересекающая рёбра BB_1 и DD_1 в точках F и E соответственно.

- а) Докажите, что сечение AFC_1E параллелограмм.
- б) Найдите площадь сечения, если известно, что AFC_1E ромб и AB=3, BC=2, $AA_1=5$.

Решение.

б) $AF = FC_1$, $AC_1 = \sqrt{38}$, BF = 2

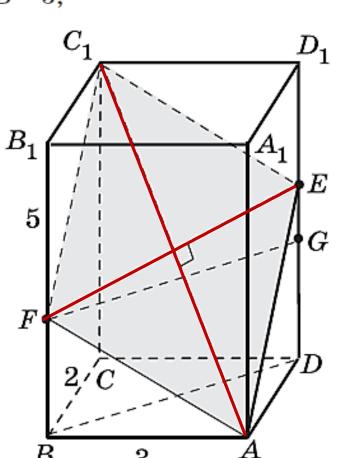
Найдём вторую диагональ ромба FE.

 $\triangle BFA = \triangle C_1D_1E$ значит $BF = D_1E = 2$.

Проведём $FG \parallel BD$. Тогда $BF = GD = 2, FG \perp DD_1$,

 $EG = DD_1 - DG - D_1E = 5 - 2 - 2 = 1$,

Из $\triangle ABD$ по теореме Пифагора $BD = \sqrt{2^2 + 3^2} = \sqrt{13}$ и $FG = BD = \sqrt{13}$.


В прямоугольном ΔFEG по теореме Пифагора находим

 $FE = \sqrt{FG^2 + EG^2} = \sqrt{14}.$

Площадь S ромба AFC₁E находим по формуле

 $S = \frac{1}{2}FE \cdot AC_1 = \frac{1}{2}\sqrt{38} \cdot \sqrt{14} = \sqrt{19 \cdot 7} = \sqrt{133}.$

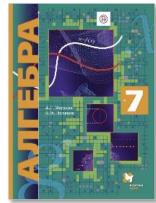
Ответ. б) $\sqrt{133}$.

Портфель ГК по геометрии. Преемственность линий

Основная школа (7-9 кл.)		Старшая шк	ола (10-11 кл.)
	7-9 кл	Базовый уровень	Углублённый уровень
Базовый уровень	Мерзляк А.Г.(7-9) (Вентана-Граф) № ФПУ 1.1.2.4.3.5.1-3	Мерзляк А.Г. (10-11) Б (Вентана-Граф) № ФПУ 1.1.3.4.1.18.1-2	
	Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. (7-9) № ФПУ 1.1.2.4.3.1.1	Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. (10-11) БУ № ФПУ 1.1.3.4.1.2.1	
	Берсенев А. В., Сафонова Н. В. Сферы (7-9) № ФПУ 1.1.2.4.3.2.1-3		
	Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. / Под ред. Садовничего В.А. (7-9) № ФПУ 1.1.2.4.3.3.1-3	Бутузов В.Ф., Прасолов В.В. / Под ред. Садовничего В.А. (10-11) БУ № ФПУ 1.1.3.4.1.3.1	
	Погорелов А.В. (7-9) № ФПУ 1.1.2.4.3.7.1	Погорелов А.В. (10-11) БУ № ФПУ 1.1.3.4.1.12.1	
	Шарыгин И.Ф. (7-9) № ФПУ 1.1.2.4.3.9.1	Шарыгин И.Ф. (10-11) Б (Дрофа) № ФПУ 1.1.3.4.1.16.1	
	Смирнов В.А., Смирнова И.М. (7-9) № ФПУ 1.1.2.4.3.10.1-3		
Углубленный уровень	Мерзляк А.Г., Поляков В.М. (7-9) У (Вентана-Граф) № ФПУ 1.1.2.4.3.6.1-3		Мерзляк А.Г., Поляков В.М. (10-11) У (Вентана-Граф) № ФПУ 1.1.3.4.1.24.1-2
			Александров А.Д., Вернер А.Л., Рыжик В.И. (10-11) У 1.1.3.4.1.19.1-2
			Потоскуев Е.В. (10-11) У
			(Дрофа) № ФПУ 1.1.3.4.1.21.1-2

Курсы по выбору			
Математика. Наглядная геометрия. 5-6 классы			
Ходот Т.Г., Ходот А.Ю., Велиховская В.Л. (5-6)			
№ ФПУ 2.1.2.3.1.2.1-2			
Панчищина В.А., Гельфман Э.Г., Ксенева В.Н. и			
др. (5-6)			
№ ФПУ 2.1.2.3.1.1.1			
Шарыгин И.Ф. (5-6)			
№ ФПУ 2.1.2.3.1.3.1			

Учебник – основной инструмент учителя

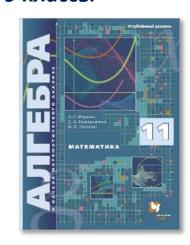


Учебник – основной инструмент учителя

Углубленный уровень

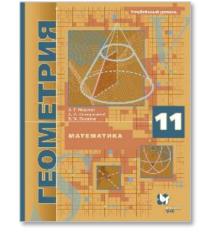
Базовый уровень

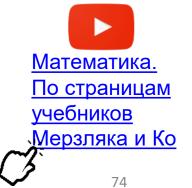
Углубленный уровень



Математика

МАТЕМАТИКА 5-6 классы


Алгебра 7-9 классы


Алгебра и начала математического анализа 10-11 классы

Геометрия 10-11 классы

Примерная рабочая программа

Рабочая программа по алгебре и началам
математического анализа. 10—11 классы 108
Пояснительная записка
Содержание курса
Тематическое планирование
10 класс
11 класс
Рабочая программа по геометрии. 10—11 классы 141
Пояснительная записка
Содержание курса
Тематическое планирование
10 класс
11 класс

Методические пособия для учителей

- Алгебра и начала математического анализа. Базовый уровень. 10 класс. Методическое пособие
- Алгебра и начала математического анализа. Базовый уровень. 11 класс. Методическое пособие
- <u>Алгебра и начала математического анализа.</u>
 <u>Углубленный уровень. 10 класс. Методическое пособие</u>
- <u>Алгебра и начала математического анализа.</u>
 <u>Углубленный уровень. 11 класс. Методическое пособие</u>
- <u>Геометрия. Базовый уровень. 10 класс.</u> Методическое пособие
- <u>Геометрия. Базовый уровень. 11 класс.</u> Методическое пособие
- <u>Геометрия. Углубленный уровень. 10 класс.</u> Методическое пособие
- <u>Геометрия. Углубленный уровень. 11 класс.</u> <u>Методическое пособие</u>

Всероссийская проверочная работа по математике

<u>Пособия для подготовки к ВПР</u>
<u>УМК Мерзляк А.Г. и др.</u>

Всероссийские проверочные работы. Математика. 15 типовых вариантов. 5 - 7классы.

Материалы для подготовки

<u>ОГЭ. Математика. 15 новых вариантов от "Просвещения".</u> <u>Шестаков С.А., Ященко И. В.</u>

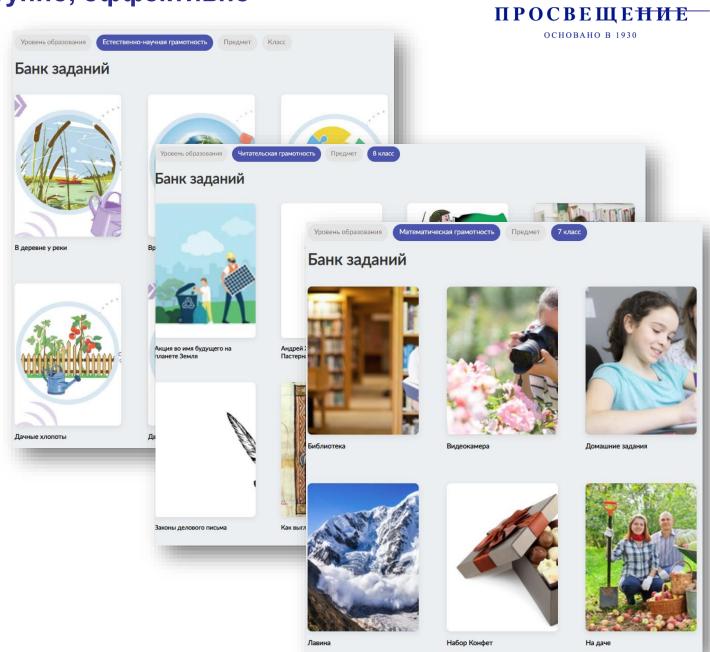
Математика. Задания повышенного и высокого уровня сложности. Приемы и способы решения. Крайнева Л. <u>Б</u>.

В помощь выпускнику. ОГЭ. Математика. Справочник с комментариями ведущих экспертов.

Кузнецова Л. В., Суворова С. Б., Булычев В. А. и др.

<u>Я сдам ОГЭ-2019! Математика. Курс самоподготовки. Технология</u> решения заданий. Ященко И. В., Шестаков С. А.

Я сдам ОГЭ-2019! Математика. Геометрия. Типовые задания. Ященко И. В., Шестаков С. А.


Я сдам ОГЭ-2019! Математика. Алгебра. Типовые задания. Ященко И. В., Шестаков С. А.

Электронный банк заданий. Удобно, доступно, эффективно

просвещение

- Интерактивные задания по всем видам функциональной грамотности
- Возможна сортировка заданий по виду грамотности,
 предмету и классу, распечатки ситуации и заданий
- Доступна электронная версия печатного пособия с возможностью выбора тем
- Дидактическая карточка даёт рекомендации по включению заданий и ситуаций в образовательный процесс. Позволит использовать ключи для оценки выполненных учащимися работ.
- Доступны различные способы получения доступа.
- Возможность конструировать банк заданий под актуальные потребности региона

Ссылка на электронный банк заданий

Серия «ЗАДАЧНИКИ»

МНОГОФУНКЦИОНАЛЬНЫЕ ПОСОБИЯ

для эффективной подготовки к олимпиадам, ОГЭ, ЕГЭ, ВПР, международным исследованиям

- Позволят учащимся существенно повысить уровень своей функциональной грамотности
- Содержат разнообразные тренировочные и проверочные задания и упражнения для текущего и итогового контроля знаний, а также творческие задания, позволяющие углубить знания по различным предметным областям
- Универсальные, могут быть использованы с любым учебно-методическим комплектом

ΑΛΓΕБΡΑ Ν ΗΑΥΑΛΑ

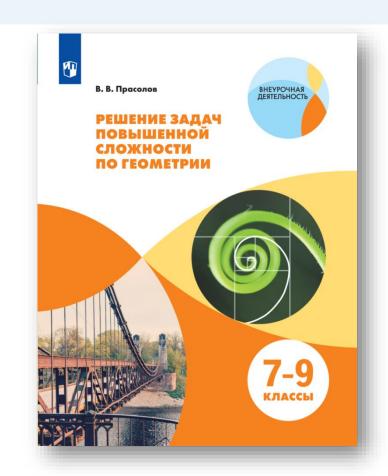
МАТЕМАТИЧЕСКОГО

Универсальный

многоуровневый

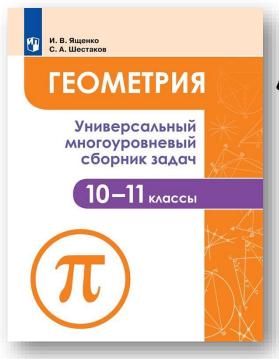
сборник задач

10-11 классы



Серия «Внеурочная деятельность»

<u>Решение задач повышенной сложности по геометрии.</u>
<u>7-9 классы. Прасолов В. В.</u>


- В каждом разделе перечисление основных фактов и понятий
- Разбор решения нескольких наиболее типичных задач повышенной сложности.
- Задачи для самостоятельного решения, постепенно формируют умения решать задачи.
- **В** конце пособия приведены ответы и указания ко всем задачам.
- Книга может быть полезной как для учителей, так и для учащихся, которые хотят повысить свой уровень при подготовке к математическим олимпиадам.

УНИВЕРСАЛЬНЫЕ ЗАДАЧНИКИ

ПЛАНИМЕТРИЯ

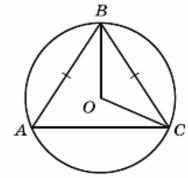
Глава 3. Окружности

Дополнительные материалы

🛕 Ответы к задачнику "Геометрия. Универсальный многоуровневый сборник задач 10-11 классы." (Ященко И.В., ШЕстаков С.А.)

СТЕРЕОМЕТРИЯ

Глава 1. Отрезки, углы, треугольники 1.1. Отрезки и углы 1.2. Равносторонний и равнобедренный треугольники 1.3. Прямоугольный треугольник 1.4. Произвольный треугольник 1.5. Координаты и векторы Глава 2. Многоугольники 2.1. Параллелограмм 2.2. Трапеция 2.3. Прочие многоугольники 2.4. Координаты и векторы


Глава 4. Прямые, плоскости, призмы 4.1. Призма, её элементы. Правильная треугольная призма 4.2. Куб
4.3. Прямоугольный параллелепипед
4.4. Произвольный параллелепипед
4.5. Правильная шестиугольная призма
4.6. Произвольные многогранники
Глава 5. Пирамиды 5.1. Правильная треугольная пирамида
5.2. Правильная четырёх угольная пирамида
5.3. Правильная шестиугольная пирамида
5.4. Произвольная пирамида
5.5. Комбинации многогранников
Глава 6. Тела вращения 6.1. Цилиндр
6.2. Конус
6.3. Сфера и шар
6.4. Комбинации тел вращения и многогранников

3.2. Окружность и треугольники

Уровень А

- **A1.** а) В треугольнике ABC стороны AC = 8, BC = 15, угол C равен 90°. Найдите радиус описанной около этого треугольника окружности.
 - б) В треугольнике ABC стороны AC = 10, BC = 24, угол C равен 90° . Найдите радиус описанной около этого треугольника окружности.
- **A2.** а) В треугольнике ABC стороны AC = 8, BC = 15, угол C равен 90° . Найдите радиус окружности, вписанной в этот треугольник.
 - б) В треугольнике ABC стороны AC = 10, BC = 24, угол C равен 90° . Найдите радиус окружности, вписанной в этот треугольник.
- А3. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC. Найдите угол BOC, если:
 - a) $\angle ABC = 57^{\circ}$;
 - б) $∠ABC = 25^{\circ}$.

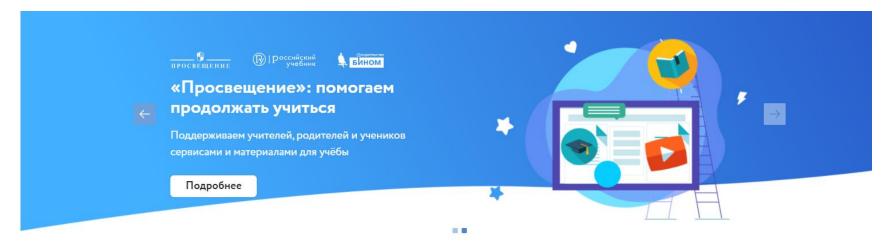
УНИВЕРСАЛЬНЫЕ ЗАДАЧНИКИ

Уровень В

- В1. а) Углы B и C треугольника ABC равны 61° и 89° соответственно. Найдите сторону BC, если радиус окружности, описанной около треугольника ABC, равен 10.
 - б) Углы B и C треугольника ABC равны 73° и 77° соответственно. Найдите сторону BC, если радиус окружности, описанной около треугольника ABC, равен 9.
- В2. а) Углы B и C треугольника ABC равны 71° и 79° соответственно. Найдите сторону BC, если радиус окружности, описанной около треугольника ABC, равен 8.
 - б) Углы A и B треугольника ABC равны 63° и 87° соответственно. Найдите радиус окружности, описанной около треугольника ABC, если AB=12.

Уровень С

- С1. В треугольнике ABC известны длины сторон AB и AC, точка O центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD, если:
 - a) AB = 40, AC = 64;
- б) AB = 30, AC = 100.
- С18. а) Три окружности, радиусы которых равны 2 см, 3 см и 10 см, попарно касаются внешним образом. Найдите радиус окружности, вписанной в треугольник, вершинами которого являются центры этих трёх окружностей.
 - б) Три окружности, радиусы которых равны 4 см, 8 см и 12 см, попарно касаются внешним образом. Найдите радиус окружности, вписанной в треугольник, вершинами которого являются центры этих трёх окружностей.


Ссылки на вебинары и онлайн уроки

- Геометрия в итоговой аттестации по математике результаты проблемы и пути их решения
- Онлайн-уроки. 10-11 классы. Стереометрия. Разбор задания 16 профильного ЕГЭ по математике
- Необычные методы решения задач по геометрии. Мастер-класс М.С. Якира
- День учителя математики. Онлайн-трансляция

Просвещение. Поддержка

Учителям Школьникам Родителям

Вебинары

Методические вебинары по актуальным темам

Конференции

Конференции с авторами, специалистами-практиками, экспертами

Рабочие программы

Методическое сопровождение урока: программы, разработки, наглядные материалы

Повышение квалификации

Курсы повышения квалификации с выдачей сертификата

Горячая линия поддержки

Методическая поддержка 24/7

Домашние задания

Интерактивные рабочие тетради с автоматической проверкой

- Портал, на котором собраны материалы в помощь учителям и родителям для организации обучения
- Консультации при выполнении домашних заданий в видеоформате
- Обмен лучшими практиками, их апробация и распространение в сотрудничестве с органами управления образованием

Всероссийская предметная неделя

«Обновлённые стандарты: обсуждаем, готовимся к реализации» 15 – 19 ноября 2021

Принять участие

ЖЕЛАЮ ТВОРЧЕСКИХ УСПЕХОВ!

Отдел методической поддержки педагогов и ОО

Ведущий методист по математике Зубкова Екатерина Дмитриевна

Моб. телефон 8 (919) 839-05-78

E-mail: EZubkova@prosv.ru

@life_and_math

Группа компаний «Просвещение»

Адрес: 127473, г. Москва, ул. Краснопролетарская, д. 16, стр. 3, подъезд 8, бизнес-центр «Новослободский»

Горячая линия: vopros@prosv.ru

Уважаемые коллеги!

Заинтересовавшие вас пособия вы можете приобрести в нашем интернет-магазине shop.prosv.ru со скидкой 10% по промокоду

WEBPROSV