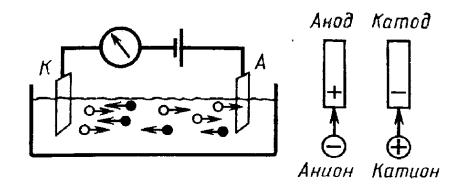

Электролиз расплавов и растворов


Электролиз – это совокупность ОВР, протекающих под действием электрического тока на электродах, погруженных в раствор или расплав электролита.

Катод - отрицательно заряженный электрод, на котором происходит процесс восстановления.

Анод - положительно заряженный электрод, на котором происходит процесс окисления.

Мнемоническое правило: На катоде катионы восстанавливаются, на аноде анионы окисляются

Виды анодов:

- 1. Инертные аноды (нерастворимые, пассивные платина, графит): материал анода не окисляется, окисляются ионы электролита.
- 2. Активные аноды (растворимые): материал анода легко окисляется (медь, цинк, железо).

Электролиз расплавов оксидов

- На катоде идет восстановление: Ме ⁿ⁺ + ne⁻⁻ = Ме⁰, т.е. на катоде выделяется металл.
- **На аноде** окисляется кислород: 20^{-2} - $4e^- = 0_2$
- Возьмем для примера электролиз расплава оксида калия: 2K₂O -> 4K + O₂

Электролиз Al₂O₃

 $Pacплав Al_2O_3 в Na_3AlF_6$ (криолит)

(–) Катод \leftarrow Al $^{3+}$ Al $O_3^{3-} \rightarrow$ (+) Анод

(–) Катод: $AI^{3+} + 3\bar{e} = AI^{0}$

(+) Анод: $4AIO_3^3 - 12\bar{e} = 2AI_2O_3 + 3O_2\uparrow$

 $2AI_2O_3 = 4AI + 3O_2$

Электролиз расплавов оснований

- На катоде традиционно восстанавливается металл:
- Me n+ +ne- = Me⁰
- На аноде будет окисляться кислород в составе гидроксид-группы:
- $4OH^{-} 4e = 2H_{2}O + O_{2}$

Пример 2: Электролиз распланза

гиддрожомда натрия.

MARCHIPPARTIPE -> MARTH-LOTH-

 $KK-:Nea+++1e- \longrightarrow Nea0 ((BOCCTAHOBJEHUE) | 4$

 $A^{+}:A^{$

4**** $\frac{3}{4}$ дектролиз + $O_2^0 + 2$ ди + $O_2^0 + 2$

Электролиз расплавов солей

1. Электролиз расплава бескислородной соли:

- На катоде всегда восстанавливается металл: Ме ⁿ⁺ +ne⁻ = Me⁰
- На аноде окисляется бескислородный анион: A ⁿ⁻ — ne[—] = A⁰
- Электролиз расплава NaCl: 2NaCl = 2Na + Cl₂

Пример 1: Электролиз расплава хлоридза натрия.

$$\begin{array}{lll} \text{Macc}|_{\text{ppacnara}} & \rightarrow \text{Mac}^{+++}\text{Ct}^{-}\\ \text{KK-:Mat}^{+++}\text{1ee} & \rightarrow \text{Mac}^{0}\text{((Bocctahobjehue))} & | 2\\ \text{AA+:} & 2221^{+-}\text{2ee} & \rightarrow \text{Cl}_{2}^{0}\text{((okucjiehue))} & | 1\\ \end{array}$$

2Ма
$$CI_2$$
 2Na + CI_2 2Na + CI_2

2. Электролиз расплава кислородсодержащей соли (элемент аниона не в высшей степени окисления):

- На катоде всегда восстанавливается металл: Ме ⁿ⁺ +ne⁻⁻ = Ме⁰
- На аноде будет окисляться элемент

- аниона: SO₃ ²⁻ 2e⁻ = SO₃
- Например, электролиз расплава сульфита натрия:
- $Na_2SO_3 = 2Na + SO_3$
- S в сульфите имеет степень окисления +4, при электролизе она окисляется до +6 — SO₃

- 3. Электролиз расплава кислородсодержащей соли (элемент аниона <u>в высшей</u> степени окисления):
- На катоде все без изменений
- На аноде т.к. элемент уже в высшей степени окисления, то окисляться будет кислород:

$$^{+4}$$
 $^{+4}$ 2 $^{-2}$ $^{-2}$ $^{-4}$ $^{-2}$ $^{-2}$ $^{-4}$ $^{-2}$

 Например, электролиз расплава карбоната натрия:

•
$$2Na_2CO_3 = 4Na + 2CO_2 + O_2$$

Электролиз растворов

Электрохимический ряд напряжений металлов

Li	Cs	K	Ва	Ca	Na	Mg	Al	Zn	Fe	Со	Ni	Sn	Pb	H2	Cu	Ag	Hg	Pt	Au
-3.04	-3.01	-2.92	-2.90	-2.87	-2.71	-2.36	-1.66	-0.76	-0.44	-0.28	-0.25	-0.14	-0.13	0	+0.34	1+0.80	+0.85	-1.28	-1.50
Li ⁺	Cs ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Na ⁺	Mg ²⁺	AI 3+	Zn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Sn ²⁺	Pb ²⁺	2H [†]	Cu ²⁺	Ag [†]	Нġ	Pt ²⁺	3+ Au

Катодные процессы в водных растворах электролитов

Электрохимический ряд напряжений металлов

CHOKIPOXIMINI ICOKNINI PAI HATIPAIXCHINI MCTAHIOD							
Li, K, Ba, Ca, Na, Mg, Al	Mn, Zn, Cr, Fe, Cd, Co, Ni	н	Cu, Hg, Ag, Pt, Au				
Восстановление молекул воды: $2H_2O + 2e^- = H_2\uparrow + 2OH^-$	Оба процесса: 1) Me ⁿ⁺ + ne ⁻ =		Восстановление катиона металла: Ме ⁿ⁺ + <i>ne</i> ⁻ = Me ⁰				

Анодные процессы в водных растворах электролитов

Анион кислотного остатка A^{m-}

Бескислородный

 $(Cl^{-}, Br^{-}, l^{-}, S^{2-} u др.,$ $\kappa pome F)$

Кислородсодержащий

 $(OH^{-}, SO_4^{-2-}, NO_3^{-},$

CO₃² и др.) и F

Окисление аниона (кроме фторида) $A^{m-} - me^{-} = A^{0}$

В кислой и нейтральной среде – окисление молекул воды:

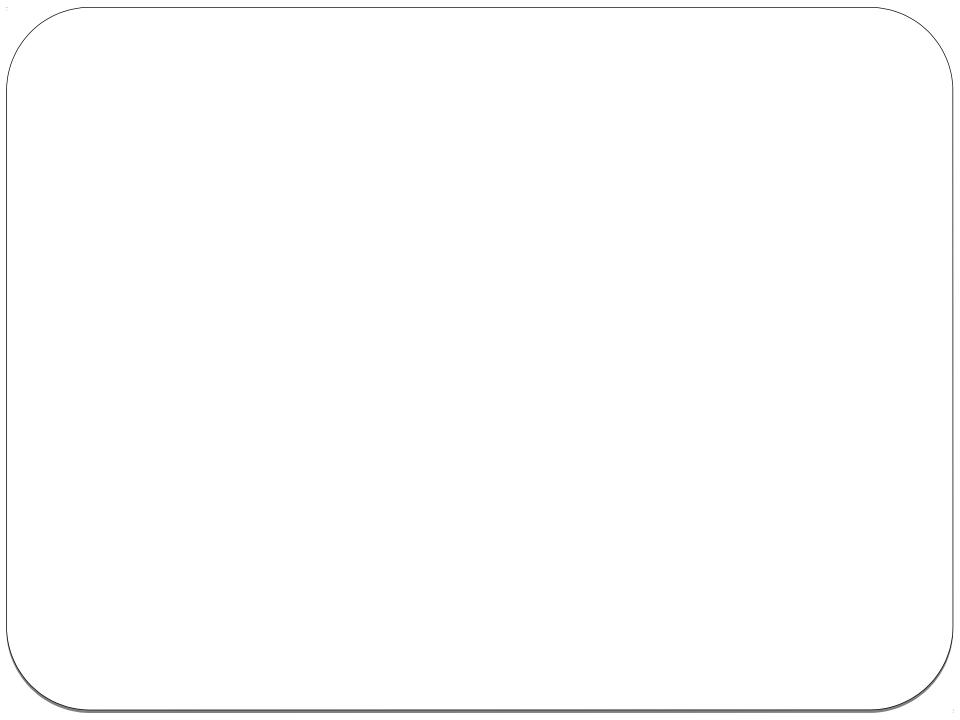
 $2H_2O - 4e^- = O_2\uparrow + 4H^+$

в щелочной среде:

 $|4OH^{-} - 4e^{-} = O_{2}\uparrow + 2H_{2}O|$

Пример 3: Электролиз раствора иодида калия.

Видеоопыт: Электролиз раствора иодида калия


$$KI_{pаствор} \rightarrow K^+ + I^-$$

 $K^-: 2H_2O+2e \rightarrow H_2+2OH^-$ (восстановление)| 1
 $A^+: 2I^- -2e \rightarrow I_2^0$ (окисление) | 1

2KI + 2H₂O
$$\xrightarrow{\text{электролиз}}$$
 H₂ + I₂ +2KOH

Пример 4: Электролиз раствора сульфата меди (II).

$$CuSO_{4\ pacтвор} o Cu^{2+} + SO_4^{2-}$$

 К ⁻: $Cu^{2+} + 2e o Cu^0$ (восстановление) | 2
 А⁺: $2H_2O - 4e o O_2 + 4H^+$ (окисление) | 1

2CuSO₄ + 2H₂O
$$\xrightarrow{\text{электролиз}}$$
 2Cu + 2H₂SO₄ + O₂↑

Электролиз водных растворов солей отличается от электролиза расплавов

Отличие — в наличии растворителя.
 При электролизе водных растворов солей кроме ионов самого вещества в процессе участвуют ионы растворителя.
 При электролизе расплавов — только ионы самого вещества.

Закрепление и применение

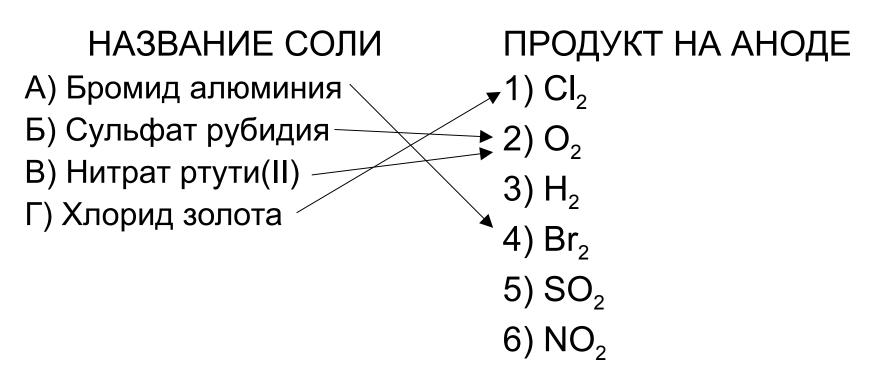
полученных знаний

Задание 22 Повышенный уровень сложности

Установите соответствие между формулой соли и продуктом, образующимся на катоде при электролизе его водного раствора

ФОРМУЛА СОЛИ ПІ			РОДУКТ НА КАТОДЕ					
A)	CuCl ₂	1)	водород					
Б)	AgNO ₃	2)	кислород					
B)	K ₂ S	3)	металл					
Γ)	NaBr	4)	галоген					
		5)	сера					
		6)	азот					

ПРИМЕРЫ ЗАДАНИЯ ЕГЭ, задание 22


Установите соответствие между формулой соли и продуктом, образующимся на катоде при электролизе её водного раствора.

Ответ. 4412

ПРИМЕРЫ ЗАДАНИЯ ЕГЭ, задание 22

Установите соответствие между названием соли и продуктом, образующимся на инертном аноде при электролизе её водного раствора.

Ответ. 4221

ПРИМЕР ЗАДАНИЯ ЕГЭ, высокий уровень сложности

Задание 31. При взаимодействии оксида алюминия с азотной кислотой образовалась соль, которую высушили и прокалили. Образовавшийся при прокаливании твердый остаток подвергли электролизу в расплавленном криолите. Полученный при электролизе металл нагрели с концентрированным раствором, содержащим нитрат калия и гидроксид калия, при этом выделился газ с резким запахом. Составьте уравнения четырех описанных реакций.

OTBET

1. При взаимодействии оксида алюминия с азотной кислотой образовалась соль:

$$AI_2O_3 + 6HNO_3 = 2AI(NO_3)_3 + 3H_2O.$$

2. Соль высушили и прокалили:

$$4AI(NO_3)_3 = 2AI_2O_3 + 12NO_2 + 3O_2$$

3. Образовавшийся при прокаливании твердый остаток подвергли электролизу в расплавленном криолите:

электролиз
$$2AI_2O_3 = = = = = = = 4AI + 3O_2$$
.

4. Полученный при электролизе металл нагрели с концентрированным раствором, содержащим нитрат калия и гидроксид калия, при этом выделился газ с резким запахом 8AI + 3KNO₃ + 5KOH + 18H₂O = 8K[AI(OH)₄] + 3NH₃.

ПРИМЕР ЗАДАНИЯ ЕГЭ, высокий уровень сложности

Задание 31. Вещество, полученное на аноде при электролизе раствора йодида натрия с инертными электродами, прореагировало с сероводородом. Образовавшееся твердое вещество сплавили с алюминием и продукт растворили в воде. Составьте уравнения четырех описанных реакций.

OTBET

1. Вещество получено на аноде при электролизе раствора йодида натрия с инертными электродами:

$$2NaI + 2H_2O = = = = = = 2NaOH + H_2 + I_2.$$

2. Полученное вещество прореагировало с сероводородом:

$$I_2 + H_2S = S + 2HI.$$

3. Образовавшееся твердое вещество сплавили с алюминием:

$$3S + 2AI = AI_2S_3$$
.

4. Продукт растворили в воде:

$$AI_2S_3 + 6H_2O = 2AI(OH)_3 + 3H_2S.$$

ПРИМЕР ЗАДАНИЯ ЕГЭ, высокий уровень сложности

Задание 31. Раствор хлорида железа(III) подвергли электролизу с графитовыми электродами. Осадок бурого цвета, образовавшийся в качестве побочного продукта электролиза, отфильтровали и прокалили. Вещество, образовавшееся на катоде, растворили в концентрированной азотной кислоте при нагревании. Продукт, выделившийся на аноде, пропустили через горячий раствор гидроксида калия. Составьте уравнения четырех описанных реакций.

OTBET

1. Раствор хлорида железа (III) подвергли электролизу с графитовыми электродами:

$$4\text{FeCl}_3 + 6\text{H}_2\text{O} \stackrel{\underline{\text{3}}\underline{\text{TEKTDOTM3}}}{=} 2\text{Fe} + 3\text{H}_2 + 6\text{Cl}_2 + 2\text{Fe}(\text{OH})_3.$$

2. Осадок бурого цвета, образовавшийся в качестве побочного продукта электролиза, отфильтровали и прокалили:

$$2Fe(OH)_3 = Fe_2O_3 + 3H_2O.$$

3. Вещество, образовавшееся на катоде, растворили в концентрированной азотной кислоте при нагревании:

Fe +
$$6HNO_3 = Fe(NO_3)_3 + 3NO_2 + 3H_2O$$
.

4. Продукт, выделившийся на аноде, пропустили через горячий раствор гидроксида калия:

$$3CI_2 + 6KOH = 5KCI + KCIO_3 + 3H_2O$$
.

ПРИМЕР ЗАДАНИЯ ЕГЭ, ЗАДАНИЕ 32

Задание 32. Осуществите цепочку превращений:

$$CH_3C$$

NaMnO₄, NaOH

 X_1

— электролиз раствора

 C_2H_6
 CI_2 , hv

$$X_2 \xrightarrow{\text{KOH, H}_2\text{O}} X_3 \xrightarrow{\text{H}_2\text{SO}_4 \text{ (конц.)}} (C_2H_5)_2\text{O}$$

тример 5: Электролиз раствора ацентатрия.

 $Cthiscopy ba beau bbb \longrightarrow Wat ++ Cthiscopp --$

KK-::22H2@H2€ → H12+2@H-(B-€) | 1

A+:20H3000-22=30H3-6H3+2602 (0=6) 11

эл−з **200Hg0000Nba+2Hl₂OH₂+2NaOHlaOHlg-CH₃+QBG**2CO₂

Интернет-ресурсы

Изображение 1. Г. Дэви http://www.alhimikov.net/biograf/davy.html

Текст с иллюстрациями. http://school-collection.edu.ru/catalog/res/63dc1d9b-7a86-a9cc-c69e-947d93edb2cf/?

Изображение 2. Электролитическая ванна. http://d1.endata.cx/data/games/27207/06 03cemi.jpg

Изображение 3. Катод, анод. http://www.eduspb.com/public/img/formula/image005 8.png

Изображение 4. Электрохимический ряд напряжений. http://upload.wikimedia.org/wikipedia/ru/a/ad/MeTable.jpg

Видеоопыт. Электролиз раствора иодида калия.

http://files.school-collection.edu.ru/dlrstore/04141a12-4446-84ea-62fd-24bfd687d010/index.htm

Изображение 5. Гальваностегия. http://www.ictt.by/Docs/catalog2005/catalog/image/50.jpg

Изображение 6.Гальванопластика. http://www.galteh.ru/img/gallery/other13.jpg

Изображение 7. Гальванопластика. http://www.galteh.ru/img/gallery/relief109.jpg

Изображение 8. Гальванопластика и гальваностегия. http://xreferat.ru/image/108/1307217684 1.png

Изображение 9. Получение алюминия. http://

www.metalspace.ru/images/articles/education_career/metallurgy/pic_681_04.jpg

Изображение 10. Схема рафинирования меди.

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%DD%EB%E5%EA%F2%F0%EE%F1%F2%E0%F2%E8%EA%E0.% 20%CF%EE%F1%F2%EE%FF%ED%ED%FB%E9%20%D2%EE%EA/09 f/030.png

Изображение 11. ЕГЭ «Химия». http://svit24.net/images/stories/articles/2012/World/06-2012/06/z870_ximia_rezyltatu1.jpg

Изображение 12. Ученик. http://gsnrf.ru/wp-content/uploads/2012/05/65464.gif

